On NonAsymptotic Optimal Stopping Criteria in Monte Carlo Simulations

نویسندگان

  • Christian Bayer
  • Håkon Hoel
  • Erik von Schwerin
  • Raúl Tempone
چکیده

We consider the setting of estimating the mean of a random variable by a sequential stopping rule Monte Carlo (MC) method. The performance of a typical second moment based sequential stopping rule MC method is shown to be unreliable in such settings both by numerical examples and through analysis. By analysis and approximations, we construct a higher moment based stopping rule which is shown in numerical examples to perform more reliably and only slightly less efficiently than the second moment based stopping rule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations

Optimal Reactive Power Dispatch (ORPD) is a multi-variable problem with nonlinear constraints and continuous/discrete decision variables. Due to the stochastic behavior of loads, the ORPD requires a probabilistic mathematical model. In this paper, Monte Carlo Simulation (MCS) is used for modeling of load uncertainties in the ORPD problem. The problem is formulated as a nonlinear constrained mul...

متن کامل

Pricing Bermudan options by nonparametric regression: optimal rates of convergence for lower estimates

The problem of pricing Bermudan options using Monte Carlo and a nonparametric regression is considered. We derive optimal nonasymptotic bounds for a lower biased estimate based on the suboptimal stopping rule constructed using some estimates of continuation values. These estimates may be of different nature, they may be local or global, with the only requirement being that the deviations of the...

متن کامل

Monte Carlo Algorithms for Optimal Stopping and Statistical Learning

We extend the Longstaff-Schwartz algorithm for approximately solving optimal stopping problems on high-dimensional state spaces. We reformulate the optimal stopping problem for Markov processes in discrete time as a generalized statistical learning problem. Within this setup we apply deviation inequalities for suprema of empirical processes to derive consistency criteria, and to estimate the co...

متن کامل

Monte Carlo Methods for Adaptive Disorder Problems

We develop a Monte Carlo method to solve continuous-time adaptive disorder problems. An unobserved signal X undergoes a disorder at an unknown time to a new unknown level. The controller’s aim is to detect and identify this disorder as quickly as possible by sequentially monitoring a given observation process Y . We adopt a Bayesian setup that translates the problem into a two-step procedure of...

متن کامل

Multilevel simulation based policy iteration for optimal stopping – convergence and complexity∗

This paper presents a novel approach to reduce the complexity of simulation based policy iteration methods for solving optimal stopping problems. Typically, Monte Carlo construction of an improved policy gives rise to a nested simulation algorithm. In this respect our new approach uses the multilevel idea in the context of the nested simulations, where each level corresponds to a specific numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014